286
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental Study of Heat Pipe Performance Using Nanofluids

, , &
Pages 225-229 | Published online: 20 Oct 2014
 

Abstract

Heat pipe cooling is widely used in computer processors. Advances in microprocessor technology have resulted in reduced heat transfer surface area. Maintaining an efficient cooling process is therefore challenging. The main goal of this experimental study is to perform a parametric study on heat pipe performance using nanofluids. Nanofluids of 1 and 3 vol% of alumina nanoparticles of 20–50 nm diameters in deionized water versus deionized water as a base fluid were considered in the present study. The nanofluids are prepared in our laboratory using two-step method. The nanofluids thermal properties are measured to confirm the properties enhancement that could indicate a corresponding performance enhancement of the heat pipe. A 10 mm inner diameter, 200 mm long brass tube with 50 mm long evaporator, and 50 mm long water cooled condenser were used. Heat pipe wall temperature is reduced with nanofluids as is the temperature difference between the evaporator and condenser. The thermal diffusivity of the nanofluids is increased by 10%. The pipe pressure in case of deionized water was higher than the corresponding one for the nanofluids by 20–32%.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.