201
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Response Surface Methodology for Biobutanol Optimization Using Locally Isolated Clostridium acetobutylicum YM1

, , , &
Pages 1236-1243 | Published online: 11 Jul 2015
 

Abstract

In this study, response surface methodology (RSM) was applied to optimize and investigate the ability of yeast extract, CaCO3, MgSO4, and K2HPO4 to maximize biobutanol production by a novel local isolate of Clostridium acetobutylicum YM1. A central composite design was applied as the experimental design, and analysis of variance (ANOVA) was used to analyze the experimental data. A quadratic polynomial equation was obtained for biobutanol production by multiple regression analysis. ANOVA analysis showed that the model was significant (p < 0.0001), and the yeast extract, CaCO3, and MgSO4 concentrations had a significant effect on biobutanol production. However, K2HPO4 did not have a significant effect on biobutanol production. The estimated optimum combinations for biobutanol production using C. acetobutylicum YM1 were 2 g/L yeast extract, 6 g/L CaCO3, 0.1 g/L MgSO4, and 1.1 g/L K2HPO4. Subsequently, the model was validated through use of the estimated optimum conditions, which confirmed the model validity and 13.67 g/L of biobutanol was produced.

Additional information

Funding

This research was supported by Universiti Kebangsaan Malaysia under grants FGRS/1/2011/ST/UKM/02/2, DLP-2013-023, and DPP-2013-020.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.