186
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Gasification of Inferior Coal with High Ash Content under CO2 and O2/H2O Atmospheres

, , &
Pages 1046-1053 | Published online: 23 Apr 2015
 

Abstract

The gasification reaction of Nantong inferior coal was investigated in a laboratory fixed-bed reactor under CO2 and O2/H2O atmospheres. The effects of the bed temperature and inlet-gas concentration on the yields of CO, H2, and CH4 were studied. The effects of coal ash and particle size on the fixed-carbon conversion were also investigated, and kinetic analysis was conducted with a homogeneous model. The product-gas-heating value and fixed-carbon conversion increased when the temperature was increased from 950 °C to 1100 °C under CO2 atmosphere. When the inlet-CO2 concentration was increased from 50 to 100 vol.%, the low heating value of the product gas and carbon conversion ratio slightly increased. During the gasification of inferior coal under the O2/H2O atmosphere, the CO concentration increased rapidly with increasing temperature. The H2 and CH4 concentrations increased initially and then decreased. The maximum gas heating value of 7934 kJ/m3 was obtained under the O2 concentration of 70 vol.% at a bed temperature of 1050 °C. The cold-gas efficiency increased with increasing temperature and became 40.6% and 86.4% at 1100 °C under the CO2 and O2/H2O atmospheres, respectively. The gasification reaction of the Nantong inferior coal strongly depended on the content of inherent inorganic matter. The gasification rates for both the CO2 and O2/H2O atmospheres were independent of the particle size. The activation energy for the CO2 and O2/H2O gasification reactions were 137 and 81 kJ/mol, respectively. The gasification reactions of the Nantong coal, which was performed under two different atmospheres, were compared and the reaction activity of the gasification reaction under CO2 atmosphere was found to be much lower than that under the O2/H2O atmosphere.

Additional information

Funding

The authors would like to thank the Natural Science Foundation of China with Project No. 51206200, the Fundamental Research Funds for the Central Universities with Project No. CDJZR12140031, and the Visiting Scholar Foundation of Key Laboratory of Low-grade Energy Utilization Technologies and Systems, MOE of China in Chongqing University (LLEUTS-201301) for the financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.