256
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Updraft gasification of juniper wood biomass using CO2–O2 and Air (N2–O2)

, , &
Pages 1380-1387 | Published online: 08 Apr 2016
 

ABSTRACT

Biomass gasification is being considered as one of the most promising technologies for converting low-quality solid biomass fuel into gaseous fuel. Redberry juniper (Juniperus pinchotii), one of the woody species that dominate uncultivated lands in the southern great plains, USA, may have a great potential for bioenergy utilization. In this study, the results of gasification of juniper are presented. Juniper wood chips were gasified in an adiabatic fixed bed updraft gasifier using air and the mixture gas of carbon dioxide and oxygen (CO2:O2) as gasification medium. The effect of gasification parameters such as moisture contents, gasification mediums, and gasification temperature on produced gas properties and the tar yield were investigated. It was observed that oxy fuel gasification (the reaction of woody fuels with carbon dioxide) of juniper resulted in the increase of production of carbon monoxide, especially at higher peak gasification temperatures. As a result, the CO2 gasification resulted in producing higher heating value gas (6264 kJ/nm3 with dilution of CO2 and 19,750 kJ/nm3 inert free) compared to air gasification. For air gasification, it was observed that the updraft gasification produced large amount of the tar in the product gas (more than 100 g/nm3) for the fuels with moisture content between 6% and 11%. Generally, the tar yield increased with the increase of equivalence ratio (er) and moisture content. However, when the fuel moisture content reached 23.5%, the tar yield reduced significantly due low gasification temperature which reduced the less tar cracking.

Acknowledgments

We would like to thank the Department of Energy (DOE), Golden, Colorado, USA for the financial support under contract number OE-FG36-05G085003.

Nomenclature

CO=

Carbon monoxide

CO2=

Carbon dioxide

CH4=

Methane

C2H6=

Ethane

ER=

Equivalence ratio

FB=

Feedlot biomass

HHV=

Higher heating value

MGT=

Micro gas turbine

N2=

Nitrogen

O2=

Oxygen

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.