409
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer of vapor chamber with different types of microchannels

, , &
Pages 1325-1333 | Published online: 06 Jul 2016
 

ABSTRACT

Two 40-mm × 35-mm × 1.525-mm micro vapor chambers were fabricated by inductively coupled plasma etching on silicon substrates and tested in this study. One vapor chamber exhibited convergent microchannels, whose widest and narrowest width were 0.3 mm and 0.1 mm, respectively, and the other exhibited discontinuous microchannels having width of 0.3 mm. Those micro vapor chambers that were filled with deionized water in a filling ratio of approximately 48% were tested with various titled angles and input powers. The results showed that the thermal performance of the vapor chamber having discontinuous microchannels was inferior because the spacing between microchannelend and the micropostin both condensing and evaporating sections was too far to return the condensed fluid from condensing section to the evaporating section of the vapor chamber. On the contrary, the convergent microchannel in the other vapor chamber enhanced capillary force, so that the condensed liquid could be successfully forced from the condensing section to the evaporating section even with top heating mode (–90°). The thermal resistance of the vapor chamber having convergent micro channels with top heating mode was 2.08°C/W at 22 W, while the thermal resistance of the vapor chamber with horizontal heating mode was 1.46°C/W at 28 W.

Funding

The authors are indebted to the financial support from the Bureau of Energy of the Ministry of Economic Affairs, Taiwan, and to the grant from the Ministry of Science and Technology, Taiwan, under contract MOST 104-2221-E-151-037.

Additional information

Funding

The authors are indebted to the financial support from the Bureau of Energy of the Ministry of Economic Affairs, Taiwan, and to the grant from the Ministry of Science and Technology, Taiwan, under contract MOST 104-2221-E-151-037.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.