163
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Lean methane premixed combustion over a catalytically stabilized zirconia foam burner

&
Pages 1451-1459 | Published online: 11 Nov 2016
 

ABSTRACT

This study experimentally investigates lean methane/air premixed combustion in a catalytic zirconia foam burner. The burner is packed with an inert perforated alumina plate at the inlet preheating zone and with catalytic zirconia foams at the combustion zone. Catalytic foams are prepared by using a modified perovskite catalyst (LaMn0.4Co0.6O3), in which the transition metal ion Co is partially substituted by Mn and supported by inert zirconia foam. Results indicate that the flame stability limits of both catalytic and inert burners expand with increasing equivalence ratios. The stable combustion region of the catalytic burner is larger than that of the inert burner. The heterogeneous catalytic combustion effect can decrease and increase the lower and upper flame stability limits, respectively. The central temperatures of the flame fronts are higher in the catalytic burner than in the inert burner. The pressure drops of the catalytic burner are almost equal to those of the inert burner in cold flows but are significantly higher than those in the inert burner in reaction flows. Less amounts of carbon monoxide, nitric oxides, and unburned hydrocarbon emissions are detected in the catalytic burner relative to the inert burner. The thermal radiation efficiencies of the catalytic burner vary between 0.24 and 0.39 and are favorably superior to those of the inert burner, ranging from 0.11 to 0.20.

Funding

This work is supported by the National Natural Science Foundation of China (No. 51322604).

Additional information

Funding

This work is supported by the National Natural Science Foundation of China (No. 51322604).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.