376
Views
57
CrossRef citations to date
0
Altmetric
Articles

A novel framework-based cuckoo search algorithm for sizing and optimization of grid-independent hybrid renewable energy systems

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 86-100 | Received 28 Apr 2015, Accepted 05 Oct 2018, Published online: 31 Oct 2018
 

ABSTRACT

Hybrid renewable energy systems (HRES) turned into an appealing choice for supplying loads in remote areas. The application of smart grid principals in HRES provides a communication between the load and generation from the HRES. Using smart grid in the HRES will optimally utilize the generating resources to reschedule the loads depending on its importance. This paper presents a new proposed design and optimization simulation program for techno-economic sizing of grid-independent hybrid PV/wind/diesel/battery energy system using Cuckoo search (CS) optimization algorithm. Using of CS will help to get the global minimum cost condition and prevent the simulation to be stuck around local minimum. A new proposed simulation program (NPSP) is acquainted using CS to determine the optimum size of each component of the HRES for the lowest cost of generated energy and the lowest value of dummy energy, at highest reliability. A detailed economic methodology to obtain the price of the generated energy has been introduced. Results showed that using CS reduced the time required to obtain the optimal size with higher accuracy than other techniques used iterative techniques, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). Numerous significant outcomes can be extracted from the proposed program that could help scientists and decision makers.

Acknowledgments

The authors acknowledge the College of Engineering Research Center and Deanship of Scientific Research at King Saud University in Riyadh, Saudi Arabia, for their financial support for the research work reported in this article.

Additional information

Funding

This work was supported by the King Saud University [439/7];

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.