565
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Different Surface Treatments on the Properties of Jute

, , , &
Pages 158-171 | Published online: 21 Mar 2016
 

Abstract

In this study, effect of various surface treatment processes on waste jute fibers, which can be used for composite material production, was considered. For this purpose, jutes (J) were treated with NaOH as a pretreatment process before the other surface treatments. Then, alkali treated jutes (AJ) were modified with silane coupling agent (ASJ), fluorocarbon-based agent (AFJ), and also argon plasma (APJ). To investigate effects of the treatments on surface characteristics and physical properties of jutes; Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy, thermogravimetric analysis, x-ray diffraction, and scanning electron microscopy (SEM) were used. The effects of treatments were also revealed by determination of moisture content and density of the jute particles. It is determined that alkali treatment increase hydrophilicity of jute particles with providing reactive hydroxyl groups by partially removal of surface impurities as supported by FTIR analysis. This surface cleaning is also confirmed by SEM which shows surface fibrillation of AJ particles. The crystallinity index of the jute particles increased with the surface treatments by improving the crystallite packing order. Thermal stability of the jute particles changed after all of the surface treatments. According to the findings obtained from surface characterizations and physical tests, the most hydrophobic surface was achieved after fluorocarbon treatment (with alkali pretreatment) by providing the highest C/O ratio on the surface of the jute particles and reduced moisture content, which can be benefits in short fiber or particulate reinforced composite manufacturing by preventing agglomeration of fillers.

FUNDING

The authors gratefully acknowledge the funding by Scientific and Technological Research Council of Turkey (TÜBİTAK) under grants 111M498. This study is also supported by Dokuz Eylul University, project no 2011.KB.FEN.037 as a scientific project.

Additional information

Funding

The authors gratefully acknowledge the funding by Scientific and Technological Research Council of Turkey (TÜBİTAK) under grants 111M498. This study is also supported by Dokuz Eylul University, project no 2011.KB.FEN.037 as a scientific project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.