133
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Dilute Acid Pretreatment on Chemical and Physical Properties of Kenaf Biomass

, , &
Pages 256-264 | Published online: 07 May 2015
 

Abstract

In the current research, kenaf represents an agricultural biomass that possesses enormous potential for industrial applications. Because of its complex structure, which is composed of cellulose, hemicellulose, and lignin, pretreatment process was conducted. Here, dilute acid pretreatment process was conducted, statistically using the response surface method, which included three parameters: mass of biomass (g), temperature (°C), and time (min). About 2 g of kenaf biomass was treated with 2% dilute sulphuric acid, and it was found to have higher glucose conversion (25.3%) when the process was conducted for 60 min at the temperature of 180°C. The main aim of the current research is to investigate the chemical and physical changes of kenaf biomass before and after the pretreatment. The changes could be clearly seen in the cellulose, hemicellulose, and lignin composition before and after the pretreatment, which were evaluated via TAPPI standard test methods. Morphological observation under scanning electron microscope confirmed the changes that took place on the kenaf biomass from complex to simple surface structure. Fourier transform infrared analysis confirmed the presence of cellulose, hemicellulose, and lignin contents of the kenaf biomass before and after pretreatment. Crystallinity of the treated kenaf biomass also increased from 46.6% to 70.0%, as evidenced from X-ray diffractometer analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.