366
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Estimating Service Lives of Organic Vapor Cartridges II: A Single Vapor at All Humidities

Pages 472-492 | Published online: 17 Aug 2010
 

Abstract

A widely used equation model for estimating service lives of organic vapor air-purifying respirator cartridges has been updated with more recent research results. It has been expanded to account for effects of high relative humidities. Adsorption capacity competition between water vapor and organic vapor is largely explained by mutual exclusion of adsorption volume of the activated carbon. The Dubinin/Radushkevich equation is used to describe the adsorption isotherms of both water and organic vapors. Effects of relative humidity and adsorbed water on adsorption rates are described by an empirical correlation with breakthrough times. The dynamic natures of adsorption and competition are incorporated using an expanding zone model with displaced water rollup. The complete model has been tested and verified with published and unpublished data from many sources.

Acknowledgments

This work was performed at the Los Alamos National Laboratory under the auspices of the U.S. Department of Energy and funded by the National Personal Protective Technology Laboratory of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Pittsburgh, Pennsylvania.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.