138
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Use of a Directional Spray System Design to Control Respirable Dust and Face Gas Concentrations Around a Continuous Mining Machine

&
Pages 806-815 | Published online: 17 Aug 2010
 

Abstract

A laboratory study assessed the impacts of water spray pressure, face ventilation quantity, and line brattice setback distance on respirable dust and SF6 tracer gas concentrations around a continuous mining machine using a sprayfan or directional spray system. Dust levels were measured at locations representing the mining machine operator and the standard and off-standard shuttle car operators, and in the return airway. The results showed that changes in all three independent variables significantly affected log-transformed dust levels at the three operator sampling locations. Changes in setback distance impacted return airway dust levels. Laboratory testing also identified numerous variable interactions affecting dust levels. Tracer gas levels were measured on the left and right sides of the cutting drum and in the return. Untransformed gas levels around the cutting drum were significantly affected by changes in water pressure, face ventilation quantity, and setback distance. Only a few interactions were identified that significantly affected these concentrations. Gas levels in the return airway were grouped by face ventilation quantity. Return gas levels measured at the low curtain quantity were generally unaffected by changes in water pressure or curtain setback distance. At the high curtain quantity, return airway gas levels were affected by curtain setback distance. A field study was conducted to assess the impact of these parameters in an actual mining operation. These data showed that respirable dust levels may have been impacted by a change in water pressure and, to a lesser extent, by an increase in curtain setback distance. A series of tracer gas pulse tests were also conducted during this study. The results showed that effectiveness of the face ventilation was impacted by changes in curtain flow quantity and setback distance. Laboratory testing supported similar conclusions.

ACKNOWLEDGMENTS

The authors would like to thank Emery Chilton for his assistance in quantifying the solubilities of the SF6 and CH4, and the coal company and its mine workers for assisting with the underground portion of the study.

Notes

A Significant at 0.05 level of confidence.

A Significant at 0.05 level of confidence.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.