942
Views
84
CrossRef citations to date
0
Altmetric
Original Articles

Particle Resuspension During the Use of Vacuum Cleaners on Residential Carpet

, &
Pages 232-238 | Published online: 22 Feb 2008
 

Abstract

Vacuuming is generally considered to be an important activity with respect to the cleanliness of indoor environments but may lead to short-term resuspension of particulate matter and elevated particle mass in indoor air. Because resuspended particles often contain toxicants, such as lead and pesticides, or consist of biological agents that can trigger allergic reactions, it is important to understand the role of vacuuming on short-term variations in indoor particulate matter concentrations. The inhalation of particles during vacuuming events may affect adversely those whose occupation requires them to clean a wide range of indoor environments, from homes to schools and offices, as well as those who occupy those environments. In response, a series of 46 experiments was completed to determine time-variant concentrations of both PM 10 and PM 2.5 during various vacuuming activities in 12 separate apartments. Experiments involved the use of two different non-HEPA vacuum cleaners and were completed with a vacuum cleaner activated (switched on) as well as deactivated (switched off). The latter was intended to provide insight on the potential for resuspension of particles by the mechanical agitation of vacuum cleaner movement across carpet. Separate experiments were completed also using “mock” vacuuming simulations, that is, walking on the carpet in a manner consistent with using a vacuum cleaner. Results are presented as incremental particulate matter concentration increases, relative to background (prevacuum) concentrations, and peak-to-background particle concentration ratios. Results indicate significant resuspension of PM 10 mass during vacuum cleaning, with a mean time-averaged PM 10 increase of greater than 17 μ g/m 3 above background. Resuspension of PM 2.5 mass was determined to be small, that is, PM 10 mass was dominated by particles greater than 2.5 μ m. The frequency of vacuuming (between a 10-day standard frequency and several experiments at > 24 days between vacuuming) had little influence on resuspended particle mass. Resuspension by mechanical agitation (rolling of vacuum cleaner across carpet) with the vacuum cleaner switched off was determined to be substantial, with a mean time-averaged (during vacuuming) PM 10 increase of 35 μ g/m 3 relative to background. Peak-to-background PM 10 concentrations exceeded 6 for some experiments and averaged between approximately 3 and 4 for experiments when the vacuum cleaner was switched on.

ACKNOWLEDGEMENTS

The authors thank Dr. Atila Novoselec of the University of Texas at Austin for his review and comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.