438
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

A Comparison of the Wheeler-Jonas Model and the Linear Driving Force at Constant-Pattern Model for the Prediction of the Service Time of Activated Carbon Cartridges

, &
Pages 279-288 | Published online: 01 Apr 2011
 

Abstract

The linear driving force (LDF) model is applied to predict the service life of activated carbon cartridges. It is compared with the currently used Wheeler-Jonas equation, which results from a model of chemical reaction kinetics. The LDF model is based on a mass transfer model of adsorbate into the particle. The two models are studied in constant-pattern conditions. The properties of the two models are first clarified and then compared. It is shown that the Wheeler-Jonas equation leads to symmetrical breakthrough curves, whereas the constant-pattern LDF equation results in asymmetrical curves. Thus, the curvature of the isotherm has no influence on the shape of the Wheeler-Jonas curve. For the LDF breakthrough curve, it is shown that the asymmetry increases with the curvature of the isotherm. Wheeler-Jonas can be used with a Dubinin-Raduskevitch isotherm, whereas the LDF model analytical solution is valid for a Langmuir isotherm only. The LDF model can be used with the DR isotherm, but a numerical solution is required. At very low concentrations where the isotherm is linear, the constant pattern no longer exists and both models fail. The Dubinin-Raduskevitch isotherm must be fitted with a Langmuir isotherm to use the analytical solution of the LDF model.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.