412
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Workplace Protection Factors for Different Biological Contaminants

, , , , , , , , & show all
Pages 417-425 | Published online: 11 Jun 2011
 

Abstract

This study compared workplace protection factors (WPFs) for five different contaminants (endotoxin, fungal spores, (1→3)-β-D-glucan, total particle mass, and total particle number) provided by an N95 elastomeric respirator (ER) and an N95 filtering facepiece respirator (FFR). We previously reported size-selective WPFs for total particle numbers for the ER and FFR, whereas the current article is focused on WPFs for bioaerosols and total particle mass. Farm workers (n = 25) wore the ER and FFR while performing activities at eight locations representing horse farms, pig barns, and grain handling facilities. For the determination of WPFs, particles were collected on filters simultaneously inside and outside the respirator during the first and last 15 min of a 60-min experiment. One field blank per subject was collected without actual sampling. A reporting limit (RL) was established for each contaminant based on geometric means (GMs) of the field blanks as the lowest possible measurable values. Depending on the contaminant type, 38–48% of data points were below the RL. Therefore, a censored regression model was used to estimate WPFs (WPFcensored). The WPFcensored provided by the two types of respirators were not significantly different. In contrast, significant differences were found in the WPFcensored for different types of contaminants. GMs WPFscensored for the two types of respirators combined were 154, 29, 18, 19, and 176 for endotoxin, fungal spore count, (1→3)-β-D-glucan, total particle mass, and total particle number, respectively. The WPFcensored was more strongly associated with concentrations measured outside the respirator for endotoxin, fungal spores, and total particle mass except for total particle number. However, when only data points with outside concentrations higher than 176×RL were included, the WPFs increased, and the association between the outside concentrations and the WPFs became weaker. Results indicate that difference in WPFs observed between different contaminants may be attributed to differences in the sensitivity of analytical methods to detect low inside concentrations, rather than the nature of particles (biological or non-biological).

ACKNOWLEDGMENTS

The authors would like to thank the farm owners and workers who volunteered to participate in the study. This research was supported by the National Institute for Occupational Safety and Health (NIOSH R01 OH004085).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.