980
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

N95 Filtering Facepiece Respirator Deadspace Temperature and Humidity

, &
Pages 166-171 | Published online: 13 Mar 2012
 

Abstract

The objective of this study was to determine the levels of heat and humidity that develop within the deadspace of N95 filtering facepiece respirators (N95 FFR). Seventeen subjects wore two models each of N95 FFR and N95 FFR with an exhalation valve (N95 FFR/EV) while exercising on a treadmill at a low-moderate work rate for 1 and 2 hr in a temperate ambient environment. FFR deadspace temperature and relative humidity were monitored by a wireless sensor housed within the FFR. Each FFR was weighed pre- and post-testing to determine moisture retention. After 1 hr, FFR deadspace temperature and humidity were markedly elevated above ambient levels, and the FFR deadspace mean apparent heat index was 54°C. N95 FFR/EV use resulted in significantly lower deadspace temperatures than N95 FFR (p = 0.01), but FFR deadspace humidity levels were not significantly different (p = 0.32). Compared with the first hour of use, no significant increase in FFR deadspace heat and humidity occurred over the second hour. FFR mean moisture retention was < 0.3 grams over 2 hr. N95 FFR/EV offer a significant advantage in deadspace heat dissipation over N95 FFR at a low-moderate work rate over 1 hr of continuous use but offered no additional benefit in humidity amelioration. Moisture retention in N95 FFR and N95 FFR/EV is minimal after 2 hr of use.

[Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file containing N95 filtering facepiece respirator deadspace mean RH and temperature recordings for 17 subjects treadmill exercising at 5.6 Km/H over 1 hour.]

ACKNOWLEDGMENT

The authors thank Ed Fries, William Newcomb, and Drs. Ronald Shaffer and W. Jon Williams for their review of the manuscript and helpful suggestions.

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.