679
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the Performance of the N95-Companion: Effects of Filter Penetration and Comparison with Other Aerosol Instruments

, &
Pages 417-426 | Published online: 29 May 2012
 

Abstract

Fit factor is the ratio of the particle concentration outside (Cout) to the inside (Cin) of the respirator and assumes that filter penetration is negligible. For Class-95 respirators, concerns were raised that filter penetration could bias fit test measurements. The TSI N95-Companion was designed to overcome this limitation by measuring only 40–60 nm size particles. Recent research has shown that particles in this size range are the most penetrating for respirators containing electrostic filter media. The goal of this study was to better understand the performance of the N95-Companion by assessing the impact of filter penetration and by comparing Cout/Cin ratios measured by other aerosol instruments (nano-Differential Mobility Analyzer/Ultrafine Condensation Particle Counter (nano-DMA/UCPC) and the TSI PortaCount Plus) using N95 filtering facepiece respirators sealed to a manikin and with intentionally created leaks. Results confirmed that 40–60 nm-diameter size room air particles were most penetrating for the respirators tested. A nonlinear relationship was found between the N95-Companion-measured Cout/Cin ratios and the other instruments at the sealed condition and at the small leak sizes because the N95-Companion measures only charged particles that are preferentially captured by the electrostic filter media, while the other instrument configurations also measure uncharged particles, which are captured less efficiently. The Cout/Cin ratios from the N95-Companion for experiments conducted under sealed condition suggest that filter penetration of negatively charged 40–60 nm size particles was less than 0.05%. Thus, the N95-Companion measured Cout/Cin ratios are due primarily to particle penetration through leakage, not through filter media, while the Cout/Cin ratios for the PortaCount, nano-DMA/UCPC, and UCPC result from a combination of face seal leakage and filter penetration.

ACKNOWLEDGMENTS

The authors acknowledge NIOSH colleagues Ziqing Zhuang, Roland BerryAnn, William Newcomb, and Christopher Coffey for their critical review of the manuscript and suggestions. This research work was supported by NIOSH funding-CAN #927 Z1NT.

Mention of commercial product or trade name does not constitute endorsement by the National Institute for Occupational Safety and Health. The findings and conclusions of this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.