941
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

A Field Evaluation of the Physiological Demands of Miners in Canada's Deep Mechanized Mines

, , , , &
Pages 491-501 | Published online: 20 Jun 2012
 

Abstract

This study was conducted to evaluate the physical/mechanical characteristics of typical selected mining tasks and the energy expenditure required for their performance. The study comprised two phases designed to monitor and record the typical activities that miners perform and to measure the metabolic energy expenditure and thermal responses during the performance of these activities under a non-heat stress environmental condition (ambient air temperature of 25.8°C and 61% relative humidity with a wet bulb globe temperature (WBGT) of 22.0°C). Six common mining jobs were evaluated in 36 miners: (1) production drilling (jumbo drill) (n = 3), (2) production ore transportation (load-haul dump vehicle) (n = 4), (3) manual bolting (n = 9), (4) manual shotcrete (wet/dry) (n = 3), (5) general services (n = 8) and, (6) conventional mining (long-hole drill) (n = 9). The time/motion analysis involved the on-site monitoring, video recording, and mechanical characterization of the different jobs. During the second trial, continuous measurement of oxygen consumption was performed with a portable metabolic system. Core (ingestible capsule) and skin temperatures (dermal patches) were recorded continuously using a wireless integrated physiological monitoring system. We found that general services and manual bolting demonstrated the highest mean energy expenditure (331 ± 98 and 290 ± 95 W, respectively) as well as the highest peak work rates (513 and 529 W, respectively). In contrast, the lowest mean rate of energy expenditure was measured in conventional mining (221 ± 44 W) and manual shotcrete (187 ± 77 W) with a corresponding peak rate of 295 and 276 W, respectively. The low rate of energy expenditure recorded for manual shotcrete was paralleled by the lowest work to rest ratio (1.8:1). While we found that production drilling had a moderate rate of energy expenditure (271 ± 11 W), it was associated with the highest work to rest ratio (6.7:1) Despite the large inter-variability in energy expenditure and work intervals among jobs, only small differences in average core temperature (average ranged between 37.20 ± 0.22 to 37.42 ± 0.18°C) were measured. We found a high level of variability in the duration and intensity of tasks performed within each mining job. This was paralleled by a large variation in the work to rest allocation and mean energy expenditure over the course of the work shift.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Deep Mining Research Consortium (DMRC) financial support and cooperation in the research leading to this publication (funds held by Dr. Frank Reardon and Dr. Glen Kenny). Dr. Glen Kenny was supported by a University of Ottawa Research Chair Award. The authors wish to thank all those individuals, including employees of the Agnico-Eagle's Laronde mine in Preissac, Quebec, and Ms. Pascal Otis for her assistance with data collection. We would also like to thank the study participants for their time and effort in participating in this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.