378
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Implementation and evaluation of an analytical method for a novel derivatizing agent to measure 4,4'-methylene diphenyl diisocyanate atmospheres

, , &
Pages 598-603 | Published online: 21 May 2016
 

ABSTRACT

Accurate measurement of 4,4'-methylene diphenyl diisocyanate (MDI) atmospheres is a challenge since the molecule is both chemically reactive and likely to be present in aerosol form when heated and sprayed because of its low vapor pressure. Meeting this challenge requires optimizing both the sampling device used and the derivatization agent employed to stabilize the isocyanate functional group. This study describes the use of a novel derivatization reagent for isocyanate sampling to address the challenge of MDI aerosol exposure sampling. Like most conventional derivatizing agents for isocyanates, 1,8-diaminonapthalene (DAN) reacts with isocyanate functional groups to form a urea. However, unlike other isocyanate derivatizing agents, the sample workup procedure with DAN includes a second step which yields a single analyte molecule, perimidone, for each isocyanate group. This feature gives DAN the unique ability to assess exposure to “total reactive isocyanate group” (TRIG). The analytical method implemented to quantitate the perimidone uses liquid chromatography coupled with tandem mass spectrometry. Positive mode ionization led to LOD and LOQ of 10 ng/mL and 34 ng/mL, respectively. The dynamic range was from 50–2000 ng/mL (with R2 ≥ 0.990), which corresponds to TRIG concentrations in air from 0.07–3.04 µg/m3, assuming 60 min of sampling at 10 L/min (based on use of the CIP-10M sampler). The intra-day and inter-day analytical precisions were <4% for all of the concentration levels tested, and the accuracy was within an appropriate range of 98 ± 2%. Minimal matrix effect was observed, and a total recovery of 109% was obtained. The approach seems to be promising for TRIG measurements and further work is planned to establish DAN method behavior in samplers used for workplace monitoring.

Acknowledgments

The authors would like to thank Lucile Richard for her technical involvement; she contributed significantly to this project during the laboratory analysis. The authors also thank Dhimiter Bello, Robert Streicher, and Jacques Lesage, who provided invaluable advice.

Additional information

Funding

Our thanks also go to IRSST and International Isocyanate Institute for their technical assistance and financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.