278
Views
2
CrossRef citations to date
0
Altmetric
Department

Control of occupational exposure to phenol in industrial wastewater treatment plant of a petroleum refinery in Alexandria, Egypt: An intervention application case study

, , , &
Pages D208-D214 | Published online: 09 Sep 2016
 

ABSTRACT

Phenol exposure is one of the hazards in the industrial wastewater treatment basin of any refinery. It additively interacts with hydrogen sulfide emitted from the wastewater basin. Consequently, its concentration should be greatly lower than its threshold limit value. The present study aimed at controlling occupational exposure to phenol in the work environment of wastewater treatment plant in a refinery by reducing phenolic compounds in the industrial wastewater basin. This study was conducted on both laboratory and refinery scales. The first was completed by dividing each wastewater sample from the outlets of different refinery units into three portions; the first was analyzed for phenolic compounds. The second and third were for laboratory scale charcoal and bacterial treatments. The two methods were compared regarding their simplicities, design, and removal efficiencies. Accordingly, bacterial treatment by continuous flow of sewage water containing Pseudomonas Aeruginosa was used for refinery scale treatment. Laboratory scale treatment of phenolic compounds revealed higher removal efficiency of charcoal [100.0(0.0) %] than of bacteria [99.9(0.013) %]. The refinery scale bacterial treatment was [99.8(0.013) %] efficient. Consequently, level of phenol in the work environment after refinery-scale treatment [0.069(0.802) mg/m3] was much lower than that before [5.700(26.050) mg/m3], with removal efficiency of [99.125(2.335) %]. From the present study, we can conclude that bacterial treatment of phenolic compounds in industrial wastewater of the wastewater treatment plant using continuous flow of sewage water containing Pseudomonas Aeruginosa reduces the workers' exposure to phenol.

Acknowledgment

This article is one of the models that symbolize ideal correlation and fruitful collaboration, without financial support, between a research body and industry. Therefore, the authors give their great thanks to the refinery management that facilitated all research stages, and to the Occupational Health and Air Pollution Department in High Institute of Public Health, Alexandria University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.