841
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Respirable size-selective sampler for end-of-shift quartz measurement: Development and performance

, , , &
Pages 335-342 | Published online: 31 Mar 2017
 

ABSTRACT

Aims of this study were to develop a respirable size-selective sampler for direct-on-filter (DoF) quartz measurement at the end-of-shift (EoS) using a portable Fourier transform infrared (FTIR) spectrometer and to determine its size-selective sampling performance. A new miniaturized sampler has been designed to have an effective particle deposition diameter close to the portable FTIR beam diameter (6 mm). The new sampler (named the EoS cyclone) was constructed using a 3D printer. The sampling efficiency of the EoS cyclone was determined using polydisperse glass sphere particles and a time-of-flight direct reading instrument. Respirable dust mass concentration and quartz absorbance levels of samples collected with the EoS cyclone were compared to those collected with the 10-mm nylon cyclone. The EoS cyclone operated at a flow rate of 1.2 l min−1 showed minimum bias compared to the international standard respirable convention. The use of the EoS cyclone induced respirable dust mass concentration results similar but significantly larger (5%) than those obtained from samples collected with 10-mm nylon cyclones. The sensitivity of the DoF-FTIR analysis in estimating quartz was found increased more than 10 times when the samples were collected with the EoS cyclone. The average particle deposition diameter was 8.8 mm in 60 samples. The newly developed user friendly EoS cyclone may provide a better sampling strategy in quartz exposure assessment with faster feedback.

Acknowledgments

Many thanks to Mr. William Archer and Dr. Lauren Chubb at the Pittsburgh Mining Research Division for technical support.

Funding

National Institute for Occupational Safety and Health, Project #927ZLEP: Miniature Cyclone for End-of-Shift Silica Measurement.

Disclaimer

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.