738
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Transfer of bacteriophage MS2 and fluorescein from N95 filtering facepiece respirators to hands: Measuring fomite potential

, , , , , & show all
Pages 898-906 | Published online: 16 Oct 2017
 

ABSTRACT

Contact transmission of pathogens from personal protective equipment is a concern within the healthcare industry. During public health emergency outbreaks, resources become constrained and the reuse of personal protective equipment, such as N95 filtering facepiece respirators, may be needed. This study was designed to characterize the transfer of bacteriophage MS2 and fluorescein between filtering facepiece respirators and the wearer's hands during three simulated use scenarios. Filtering facepiece respirators were contaminated with MS2 and fluorescein in droplets or droplet nuclei. Thirteen test subjects performed filtering facepiece respirator use scenarios including improper doffing, proper doffing and reuse, and improper doffing and reuse. Fluorescein and MS2 contamination transfer were quantified. The average MS2 transfer from filtering facepiece respirators to the subjects' hands ranged from 7.6–15.4% and 2.2–2.7% for droplet and droplet nuclei derived contamination, respectively. Handling filtering facepiece respirators contaminated with droplets resulted in higher levels of MS2 transfer compared to droplet nuclei for all use scenarios (p = 0.007). MS2 transfer from droplet contaminated filtering facepiece respirators during improper doffing and reuse was greater than transfer during improper doffing (p = 0.008) and proper doffing and reuse (p = 0.042). Droplet contamination resulted in higher levels of fluorescein transfer compared to droplet nuclei contaminated filtering facepiece respirators for all use scenarios (p = 0.009). Fluorescein transfer was greater for improper doffing and reuse (p = 0.007) from droplet contaminated masks compared to droplet nuclei contaminated filtering facepiece respirators and for improper doffing and reuse when compared improper doffing (p = 0.017) and proper doffing and reuse (p = 0.018) for droplet contaminated filtering facepiece respirators. For droplet nuclei contaminated filtering facepiece respirators, the difference in MS2 and fluorescein transfer did not reach statistical significance when comparing any of the use scenarios. The findings suggest that the results of fluorescein and MS2 transfer were consistent and highly correlated across the conditions of study. The data supports CDC recommendations for using proper doffing techniques and discarding filtering facepiece respirators that are directly contaminated with secretions from a cough or sneeze.

Acknowledgments

The authors wish to express our sincere gratitude to Dr. Deborah Novak, Lee Portnoff, Dr. John Noti, Dr. William Lindsley, Dr. Steven Ahrenholz, Dr. Marie DePerio, Scott Brueck, and Dr. Ana Rule for their suggestions and contributions. The findings and conclusions in this report/presentation are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of any company, product, policy, of the inclusion of any reference does not constitute endorsement by NIOSH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.