1,731
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide

ORCID Icon, , , , , , , ORCID Icon & show all
Pages 87-98 | Published online: 29 Jan 2018
 

ABSTRACT

Development of an air quality monitoring network with high spatio-temporal resolution requires installation of a large number of air pollutant monitors. However, state-of-the-art monitors are costly and may not be compatible with wireless data logging systems. In this study, low-cost electro-chemical sensors manufactured by Alphasense Ltd. for detection of CO and oxidative gases (predominantly O3 and NO2) were evaluated. The voltages from three oxidative gas sensors and three CO sensors were recorded every 2.5 sec when exposed to controlled gas concentrations in a 0.125-m3 acrylic glass chamber. Electro-chemical sensors for detection of oxidative gases demonstrated sensitivity to both NO2 and O3 with similar voltages recorded when exposed to equivalent environmental concentrations of NO2 or O3 gases, when evaluated separately. There was a strong linear relationship between the recorded voltages and target concentrations of oxidative gases (R2 > 0.98) over a wide range of concentrations. Although a strong linear relationship was also observed for CO concentrations below 12 ppm, a saturation effect was observed wherein the voltage only changes minimally for higher CO concentrations (12–50 ppm). The nonlinear behavior of the CO sensors implied their unsuitability for environments where high CO concentrations are expected. Using a manufacturer-supplied shroud, sensors were tested at 2 different flow rates (0.25 and 0.5 Lpm) to mimic field calibration of the sensors with zero air and a span gas concentration (2 ppm NO2 or 15 ppm CO). As with all electrochemical sensors, the tested devices were subject to drift with a bias up to 20% after 9 months of continuous operation. Alphasense CO sensors were found to be a proper choice for occupational and environmental CO monitoring with maximum concentration of 12 ppm, especially due to the field-ready calibration capability. Alphasense oxidative gas sensors are usable only if it is valuable to know the sum of the NO2 and O3 concentrations.

Conflict of interest

The authors disclaim any conflict of interest for the present study.

Additional information

Funding

This work was supported by the National Institute of Occupational Safety and Health (1R01OH010533). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.