764
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Laboratory evaluation of a low-cost, real-time, aerosol multi-sensor

, , , &
Pages 559-567 | Published online: 20 Jun 2018
 

ABSTRACT

Exposure to occupational aerosols are a known hazard in many industry sectors and can be a risk factor for several respiratory diseases. In this study, a laboratory evaluation of low-cost aerosol sensors, the Dylos DC1700 and a modified Dylos known as the Utah Modified Dylos Sensor (UMDS), was performed to assess the sensors’ efficiency in sampling respirable and inhalable dust at high concentrations, which are most common in occupational settings. Dust concentrations were measured in a low-speed wind tunnel with 3 UMDSs, collocated with an aerosol spectrometer (Grimm 1.109) and gravimetric respirable and inhalable samplers. A total of 10 tests consisting of 5 different concentrations and 2 test aerosols, Arizona road dust and aluminum oxide, were conducted. For the Arizona road dust, total particle count was strongly related between the spectrometer and the UMDS with a coefficient of determination (R2) between 0.86–0.92. Particle count concentrations measured with the UMDS were converted to mass and also were related with gravimetrically collected inhalable and respirable dust. The UMDS small bin (i.e., all particles) compared to the inhalable sampler yielded an R2 of 0.86–0.92, and the large bin subtracted from the small bin (i.e., only the smallest particles) compared to the respirable sampler yielded an R2 of 0.93–0.997. Tests with the aluminum oxide demonstrated a substantially lower relationship across all comparisons. Furthermore, assessment of intra-instrument variability was consistent for all instruments, but inter-instrument variability indicated that each instrument requires its own calibration equation to yield accurate exposure estimates. Overall, it appears that the UMDS can be used as a low-cost tool to estimate respirable and inhalable concentrations found in many workplaces. Future studies will focus on deployment of a UMDS network in an occupational setting.

Funding

This study was supported in part by grants from the USAF School of Aerospace Medicine, Force Health Protection, QUASAR (Contract W15-KP-62315 A) and the National Institute of Occupational Safety and Health (R01/OH010295 and T42/OH008414).

Research reported in this publication was supported in part by the ECHO Program, National Institutes of Health under Award Number UG3OD023249 and PRISMS Program, National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number U54EB021973. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Funding

National Institute for Occupational Safety and Health [R01/OH010295,T42/OH008414]; National Institutes of Health [U54EB021973,UG3OD023249]; U.S. Air Force [W15-KP-62315A].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.