811
Views
9
CrossRef citations to date
0
Altmetric
Articles

Carbon monoxide exposures among U.S. wildland firefighters by work, fire, and environmental characteristics and conditions

, , , , , & show all
Pages 793-803 | Published online: 28 Oct 2019
 

Abstract

Carbon monoxide (CO) exposure levels encountered by wildland firefighters (WLFs) throughout their work shift can change considerably within a few minutes due to the varied tasks that are performed and the changing environmental and fire conditions encountered throughout the day. In a U.S. Forest Service study during the 2009–2012 fire seasons, WLFs from 57 different fires across the U.S. were monitored for CO using CO data-logging detectors while an observer recorded worker tasks, fire characteristics, and environmental conditions at scheduled intervals. Exposures to CO for 735 WLF’s work shifts were analyzed to assess the effect of variations among work tasks, fire characteristics, and environmental conditions. Geometric mean full shift time-weighted averages were low at 2.4 parts per million (ppm) and average length of work shift was 11 hr and 15 min. The task with the highest mean CO exposure was sawyer/swamper at 6.8 ppm; workers performing that task had an estimated 9 times higher odds of a having a 1-min CO measurement exceeding 25 ppm than the referent pump task (OR = 8.89, 95% CI = 1.97, 40.24). After adjusting CO exposure limits for shift length, elevation, and work level, 2% and 4% of the WLF’s work shifts exceeded the National Institute for Occupational Safety and Health’s recommended exposure level and the American Conference of Governmental Industrial Hygienist’s threshold limit value, respectively. In regression modeling, variables that were significantly associated with elevated levels of CO exposure included: task, fuel model, wind orientation, crew type, relative humidity, type of attack, and wind speed. In the absence of instruments such as CO detectors that can determine and alert WLFs to elevated CO levels, recognition of the conditions that lead to elevated levels of CO exposure can assist WLFs to effectively use administrative controls, such as work rotations, to minimize exposures.

Acknowledgments

The authors wish to thank David Wall, NIOSH for assistance with data file management. Special thanks to Kevin H. Dunn, NIOSH and Kathleen Navarro, USFS for their reviews and comments on earlier versions of this manuscript.

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.