0
Views
0
CrossRef citations to date
0
Altmetric
Report

Parade safety and planning: A heat balance case study of marching band artists

, &
Published online: 15 Jul 2024
 

Abstract

Marching band (MB) artists are subject to exertional heat illnesses (EHIs) similar to other active groups like laborers and athletes. Yet, they are an understudied population with no evidence-based heat safety guidelines. Presented here is a case study of the 233rd annual Bristol, RI Independence Day Parade in 2018 that resulted in over 50 EHIs, including 25 from the Saint Anthony Village marching band (MB) from suburban Minneapolis, MN. This research aims to identify the contributing factors that led to the large number of EHIs, as well as guide ensuring the safety of MB artists in future events. A human heat balance model in conjunction with local weather data was used to simulate heat stress on MB artists. Three modeling scenarios were used to isolate the roles of clothing (band uniform vs. t-shirt and shorts), weather (July 4, 2018 vs. 30-year climatology), and metabolic rate (slow, moderate, and brisk marching pacing) on heat stress. The results identify several key factors that increased heat stress. The meteorological conditions were unusually hot, humid, and sunny for Bristol, resulting in reduced cooling from evaporation and convection, and increased radiant heating. Behavioral factors also affect heat stress. The full marching band uniforms reduced evaporative cooling by 50% and the activity levels of marching 4 km over several hours without breaks resulted in conditions that were uncompensable. Finally, it is speculated that a lack of acclimatization for participants from cooler regions may have exacerbated heat-related impacts. These findings highlight several recommendations for MB directors and race organizers, including the use of summer uniforms for anticipated hot conditions, and advance parade planning that includes providing shade/hydration before and after the parade for participants, considering cooler routes that reduce radiant heating and preparing for anticipated heat-related health impacts appropriate for anticipated hot conditions.

Data availability

All data (meteorological and biophysical) are included in the manuscript or the Supplemental Data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.