Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 26, 2022 - Issue 5
462
Views
4
CrossRef citations to date
0
Altmetric
Articles

Estimating pedestrian delay at signalized intersections using high-resolution event-based data: a finite mixture modeling method

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 511-528 | Received 07 Sep 2020, Accepted 03 May 2021, Published online: 25 May 2021
 

Abstract

It has been widely shown that pedestrians’ level of frustration grows with the increase of pedestrian delay, and may cause pedestrians to violate the signals. However, for agencies seeking to use multimodal signal performances for signal operations, the pedestrian delay is not always readily available. To tackle this issue, this study proposed a finite mixture modeling method to estimate pedestrian delay using high-resolution event-based data collected from the smart sensors. The proposed method was used to estimate pedestrian delay at four signalized intersections on a major arterial corridor in Pima County, Arizona. The results showed the proposed method was able to capture and track the actual pedestrian delay fluctuations during the day at all the study intersections with average errors of 10 s and 13 s for mean-absolute-error and root-mean-square-error, respectively. In addition, the proposed model was compared with three conventional methods (HCM Citation2010, Virkler, Dunn) and the comparison results showed that the proposed method outperforms all the other methods in terms of both mean-absolute-error and root-mean-square-error. Furthermore, it was found that the proposed method is transferable and can be used as a network-wide delay estimation model for intersections with similar traffic patterns. The application of the proposed method could provide agencies with a more reliable, robust, and yet accurate approach for estimating pedestrian delay at signalized intersections where the pedestrian data are not readily available. In addition, it will allow system operators to quantitatively assess existing delays and enact changes to incorporate the better serve pedestrian needs.

Acknowledgments

The authors would also like to thank the Pima County Department of Transportation for data support.

Additional information

Funding

This project was funded by the National Institute for Transportation and Communities (NITC; grant number 1298) a U.S. DOT University Transportation Center.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.