Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 28, 2024 - Issue 4
183
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multi-lane’s control performance differentiation on traffic efficiency under the lane-level dynamic coordination strategy

, ORCID Icon, , &
Pages 555-572 | Received 12 Jan 2022, Accepted 07 Dec 2022, Published online: 21 Dec 2022
 

Abstract

Under the context of rapid development of the Internet of vehicles and vehicle-road collaboration system, active traffic management (ATM) becoming the mainstream means of road traffic control and developing toward refinement. In this paper, to study the high-precision lane-level dynamic induction control strategy in different scenarios, based on the NaSch model of cellular automata and combined with the characteristics of the failure section area, a fuzzy lane-changing bypass vehicle-following model considering lane-changing pressure in multi-lane failure scenarios was built. The simulation results show that (i) if the lane failure occurs on the middle lane, the lane should be induced in advance, and the induced lane change effect is the best at about 100 m. When the lane failure occurs in the left lane and right lane, the prompt is best at about 250 m. (ii) The induced distance should be based on actual traffic conditions, free combination of different early warning distances between 100 and 300 m can save about 20–30 s congestion time. (iii) The lane-level dynamic coordinated guidance control measures can effectively improve the road traffic efficiency compared with the static unified control measures, improve the traffic efficiency of road performance, and alleviate traffic congestion time. The conclusion of this paper can provide some reference for dynamic active control management and achieve higher accuracy of traffic flow lane-level control.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by the Key R&D Project of the Ministry of Science and Technology of the People’s Republic of China (2020YFC1512004); Major Projects of the National Social Science Fund (20&ZD099).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.