210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DAnoScenE: a driving anomaly scenario extraction framework for autonomous vehicles in urban streets

, , &
Received 03 Sep 2023, Accepted 02 Dec 2023, Published online: 14 Dec 2023
 

Abstract

Autonomous vehicles (AVs) hold great potential to improve traffic safety. However, urban streets present a dynamic environment where unforeseen and complex scenarios can arise. The establishment of a systematic framework to extract a variety of vehicle driving scenarios could empower AVs to learn from and effectively navigate various situations. This study introduces a driving anomaly scenario extraction (DAnoScenE) framework tailored for AVs operating in urban street settings. The Waymo Open Motion Dataset (WOMD) is used to showcase the framework’s capability to capture an extensive range of realistic driving anomaly scenarios. The central process involves the detection and labeling of driving anomalies. To avoid the erroneous detected and labeled driving anomalies arising from issues such as outliers and noise within vehicle track data, a two-step approach is introduced to analyze and rectify vehicle movement parameters in raw data. To comprehend these driving anomalies and their associated scenarios, manual labeling identifies causative factors of scenarios such as traffic signals and behaviors of other agents, forming three scenario groups: Signal Interaction, Agent Interaction, and Other. A multimodal model is developed to classify scenario groups, complemented by a segmentation process that further divides groups into specific scenarios based on simple conditions. The results show that recognition accuracy for driving anomaly scenario groups achieved 98.4%, and the scenario segmentation method achieved 100% accuracy by simple conditions. The proposed framework provides valuable support for the advancement of autonomous driving algorithms and comprehensive AV testing, with a specific emphasis on navigating abnormal driving environments.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

Additional information

Funding

This study was funded by National Key Research and Development Program of China (2023YFB4302703) and the Science & Technology Program of the Ministry of Public Security (2022JSZ16).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.