70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A reinforcement learning based autonomous vehicle control in diverse daytime and weather scenarios

, , &
Received 16 Sep 2023, Accepted 15 Jun 2024, Published online: 26 Jun 2024
 

Abstract

Autonomous driving holds significant promise for substantially reducing road fatalities. Unlike traditional machine learning methods that have conventionally been applied to enhance the motion control of Autonomous Vehicles (AVs), recent attention has shifted toward the utilization of Deep Learning (DL) and Deep Reinforcement Learning (DRL) techniques. These advanced approaches have the potential to greatly improve AV vehicle control and empower vehicles to learn from their surroundings. However, the majority of existing research has concentrated on straightforward scenarios, often neglecting the intricate challenges posed by vulnerable road users such as pedestrians, cyclists, and motorcyclists, as well as the influence of varying weather conditions. In this study, we propose a novel model founded on DRL, specifically leveraging Deep-Q Networks (DQN), to effectively manage AVs in complex scenarios characterized by heavy traffic, diverse road users, and diverse weather conditions. Our approach involves training the model in diverse weather conditions, encompassing clear daytime and nighttime as well as challenging weather conditions like heavy rainfall during both the day and sunset. Through this comprehensive training, the AV becomes proficient in navigating safely through intersections and reaching its destination without any accidents. To rigorously evaluate and validate our proposed approach, extensive testing was conducted employing the CARLA simulator. The simulation results unequivocally demonstrate that our model not only reduces travel delays but also minimizes the occurrence of collisions, marking a significant step forward in achieving safer and more efficient autonomous driving.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.