10
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An Enhanced CPA Algorithm for Real-Time Target Tracking in Wireless Sensor Networks

, , &
Pages 619-643 | Published online: 05 Oct 2009
 

Abstract

Real-time tracking of moving targets using wireless sensor networks has been a challenging problem because of the high velocity of the targets and the limited resources of the sensors. CPA (closest point of approach) algorithms are appropriate for tracking fast-moving targets since the tracking error is roughly inversely proportional to the square root of the target velocity. However, this approach requires a specific node configuration with reference to the target trajectory which may not always be possible in randomly deployed sensor networks. Moreover, our mathematical analysis of the original CPA algorithm shows that it suffers from huge localization errors due to inaccuracies in sensor location and measured CPA times. To address these issues, we propose an enhanced CPA (ECPA) algorithm which requires only five sensors around the target to achieve the reliability and efficiency we want for computing the bearing of the target trajectory, the relative position between the sensors and the trajectory, and the velocity of the target. To validate the ECPA algorithm, we designed and implemented this algorithm over an actual data-centric acoustic sensor network as well as simulating it in an NS-2 simulator. The results of our field experiments and simulations show that we can achieve our goals of detecting the target and predicting its location, velocity and direction of travel with reasonable accuracy.

This research is supported in part by the U.S. Army Night Vision Electronic Sensors Directorate (NVESD) under Prime Contract Number DAAB07-03-D-C213-005, Subcontract No. SUB1170933RB.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.