190
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

On the Stress Analysis of Functionally Graded Gear Wheels with Variable Thickness

, , , &
Pages 121-137 | Received 20 Aug 2007, Accepted 13 Nov 2007, Published online: 22 Jan 2008
 

Abstract

This paper presents the elastic solutions of the gear wheels made of functionally graded material (FGM) with variable thickness subjected to rotating loads. The material properties and wheel thickness profile are assumed to be represented by two power law distributions. Solid and hollow wheels are considered and the solutions for the stresses and displacements are given under appropriate boundary conditions. The solutions for FGM are compared with that of non-FGM, and for variable thickness and for uniform thickness. The effects of the material grading index, n, and the geometry of the wheel on the stress and displacement are investigated. It is found that a functionally graded wheel with parabolic and hyperbolic convergent thickness profile has smaller stresses and displacements compared with that with uniform thickness. The maximum radial stress for the solid functionally graded wheel with parabolic thickness profile was not at the center, whereas for solid wheel with uniform thickness, the maximum was at the center. The results obtained suggest that an FGM gear wheel with hyperbolic convergent and parabolic concave thickness profile is more suitable compared with that of uniform thickness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.