49
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Neural-Network Solution of the Nonuniqueness Problem in Acoustic Scattering Using Wavelets

&
Pages 217-222 | Published online: 03 Jun 2008
 

Abstract

The solution of Helmholtz integral equation for acoustic scattering is confronted with a nonuniquness issue at the characteristic wave numbers. In this paper, a neural network-based solution to this problem is proposed. To start with, the moment matrix resulting from the discretized Helmholtz integral equation is sparsified using appropriate wavelet techniques. This sparse matrix is, further, analyzed to obtain unique patterns that characterize its structure. As a result, a proper training set of these patterns is constructed and utilized to train a back propagation neural network. The trained network is capable of predicting the scattered acoustic field for the wave numbers at which the problem doesn't suffer any nonuniqueness. Moreover, the network can also be used to obtain the scattered field even for such wavenumbers at which the nonuniqueness occurs. Comparing the neural network outputs with the exact solutions demonstrates the validity and efficiency of the proposed method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.