170
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Optimal Shape Design in Heat Transfer Based on Body-Fitted Grid Generation

&
Pages 227-243 | Published online: 04 Apr 2013
 

Abstract

This paper deals with an inverse steady-state heat transfer problem. We develop in this work a new numerical methodology to infer the shape a heated body should have for the temperature distribution on part of its boundary to match a prescribed one. This new numerical methodology solves this shape optimization problem using body-fitted grid generation to map the unknown optimal shape onto a fixed computational domain. This mapping enables a simple discretization of the Heat Equation using finite differences and allows us to remesh the physical domain, which varies at each optimization iteration. A novel aspect of this work is the sensitivity analysis, which is expressed explicitly in the fixed computational domain. This allows a very efficient evaluation of the sensitivities. The Conjugate Gradient method is used to minimize the objective function and this work proposes an efficient redistribution method to maintain the quality of the mesh throughout the optimization procedure.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.