136
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Analytic Approximate Solutions of Mixed Convection about an Inclined Flat Plate Embedded in a Porous Medium Filled with Nanofluids

&
Pages 440-451 | Published online: 24 Jul 2013
 

Abstract

This work is focused on the study of the mixed convection heat transfer over an inclined flat plate in a porous medium saturated with nanofluids. The governed partial differential equations are transformed into ordinary differential equations, which are obtained by similarity solution. A Padé technique is introduced and combined with differential transform method (DTM) with the aim of extending the convergence area of the series solutions. Comparisons are made between the results of the proposed method and the numerical method (fourth-order Rung–Kutta), as well as available results from the literature in solving this problem, and excellent agreement has been observed. The effects of the pertinent parameters, namely wall suction/injection parameter, mixed convection parameter, prescribed constant, nanoparticles volume fraction factor, and different nanoparticles, on the temperature distribution along with local Nusselt number are presented graphically and the physical aspects of the problem are highlighted and discussed.

Acknowledgments

The authors wish to express their sincere thanks to the anonymous reviewers for their valuable and interesting comments and suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.