Publication Cover
LEUKOS
The Journal of the Illuminating Engineering Society
Volume 15, 2019 - Issue 1
271
Views
6
CrossRef citations to date
0
Altmetric
Articles

Comparing Measures of Gamut Area

ORCID Icon
Pages 29-53 | Received 24 Jan 2018, Accepted 11 Jul 2018, Published online: 17 Oct 2018
 

ABSTRACT

This article examines how the color sample set, color space, and other calculation elements influence the quantification of gamut area. The IES TM-30-18 Gamut Index (Rg) serves as a baseline, with comparisons made to several other measures documented in scientific literature and 12 new measures formulated for this analysis using various components of existing measures. The results demonstrate that changes in the color sample set, color space, and calculation procedure can all lead to substantial differences in light source performance characterizations. It is impossible to determine the relative “accuracy” of any given measure outright, because gamut area is not directly correlated with any subjective quality of an illuminated environment. However, the utility of different approaches was considered based on the merits of individual components of the gamut area calculation and based on the ability of a measure to provide useful information within a complete system for evaluating color rendition. For gamut area measures, it is important to have a reasonably uniform distribution of color samples (or averaged coordinates) across hue angle—avoiding exclusive use of high-chroma samples—with sufficient quantity to ensure robustness but enough difference to avoid incidents of the hue-angle order of the samples varying between the test and reference conditions. It is also important to use a modern, uniform color space that is suitable for the quantification of color appearance and color difference.

Disclosure statement

The author reports no conflict of interest.

Additional information

Funding

This work was supported by the U.S. Department of Energy’s Solid-State Lighting Program, part of the Office of Energy Efficiency and Renewable Energy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 134.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.