258
Views
0
CrossRef citations to date
0
Altmetric
Clinical Research

Circulating intestinal fatty acid binding protein and intestinal toxicity in Russell’s viper envenomation

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 311-318 | Received 21 Jun 2021, Accepted 30 Jul 2021, Published online: 11 Aug 2021
 

Abstract

Objective

Abdominal pain is known to be an early clinical predictor of severe systemic Russell’s viper (RV) envenomation and is often associated with the later development of coagulopathy and neurotoxicity. The mechanism of abdominal pain is unknown, but we postulated it might be due to intestinal microvascular endothelial gut damage. Gut-toxicity can be detected using the novel biomarker Intestinal Fatty Acid Binding Protein (IFABP). We also wanted to explore the mechanisms and consequences of this toxicity by measuring procalcitonin as a specific marker of sepsis triggered by bacterial endotoxin, and serum cystatin-C (CysC) as a measure of acute kidney injury. We hypothesised that severe gut-injury might lead to gut-barrier failure, translocation of gastrointestinal microorganisms, associated sepsis and systemic inflammatory response syndrome (SIRS), with a possible exacerbation of snake-bite severity, including acute kidney injury that was previously attributed to direct venom effects.

Methods

Serial plasma samples previously collected from 16 RV envenomations with abdominal pain, 15 RV envenomations without abdominal pain and 25 healthy controls were assayed for IFABP. A subgroup of these RV envenomations were assayed for procalcitonin (n = 24) and serum CysC (n = 11).

Results

The median peak IFABP for RV envenomations was much higher than healthy controls [3703.0 pg/mL (IQR 2250.1–13702.0 pg/mL) vs. 270.1 pg/mL (IQR 153.5–558.0 pg/mL) (p < 0.001)]. There was no difference in those with and without abdominal pain [3801.4 pg/mL (IQR 2080.5–22446.3 pg/mL) vs. 3696.6 pg/mL (IQR 2280.3–4664.7 pg/mL) (p = 1.0)]. Peak procalcitonin levels were elevated in envenomed patients 30.1 ng/ml (IQR: 13.1–59.7 ng/ml) with a level >2ng/mL indicative of severe sepsis] and also correlated with peak IFABP (r = 0.55, p = 0.006, n = 24). Peak serum CysC was also elevated and also correlated with IFABP (r = 0.71, p = 0.037, n = 9).

Conclusion

IFABP is significantly elevated indicating enterocyte damage occurs in RV envenomation. IFABP correlated with markers of sepsis (procalcitonin) and acute kidney injury (serum CysC) suggesting that enterocyte damage resulting in translocation of microbial associated molecular patterns (MAMPs) contributes to RV envenomation associated SIRS and sepsis.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Translational Clinical Toxicology Pilot Project University of Sydney Grant, National Health and Medical Research Council Grant [1055176 & 1011772]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,501.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.