340
Views
58
CrossRef citations to date
0
Altmetric
Research Article

Nitric Oxide Scavenging by Hydroxocobalamin May Account for Its Hemodynamic Profile

, , &
Pages 29-36 | Received 27 Apr 2006, Accepted 12 May 2006, Published online: 20 Oct 2008
 

Abstract

Background. Antidotal doses of hydroxocobalamin are associated with transient increases in blood pressure in some animals and humans. These studies in anesthetized rabbits were undertaken to explore the possible mechanisms underlying the hemodynamic effects of hydroxocobalamin by investigating 1) possible hemodynamic effects of cyanocobalamin, which is formed on a molar-to-molar basis when hydroxocobalamin binds cyanide, and 2) the interference of hydroxocobalamin with the endothelial nitric oxide system. Methods. Study 1 investigated the hemodynamic effects of cyanocobalamin. This study included two treatment arms: 1) cyanocobalamin (75 mg/kg, IV) followed by saline (n = 7) and 2) saline followed by cyanocobalamin (n = 7). Study 2 assessed the hemodynamic effects of hydroxocobalamin (75 mg/kg, IV) in the presence and absence of the nitric oxide synthase inhibitor L-Nω-nitro-L-arginine methyl ester (L-NAME; 30 mg/kg, IV). Nitric oxide synthase inhibition itself increases blood pressure. Thus, as part of Study 2, the hemodynamic effects of hydroxocobalamin were also investigated in the presence of an equipressor dose of angiotensin II (ANGII; 0.05 μg/kg/min, IV) in order to determine whether elevated blood pressure per se could interfere with hydroxocobalamin's hemodynamic effects. This study included six treatment arms (designated as first treatment + second treatment): saline + saline (n = 5), L-NAME + saline (n = 7), saline + hydroxocobalamin (n = 7), L-NAME + hydroxocobalamin (n = 7), ANGII + hydroxocobalamin (n = 7), and ANGII + saline (n = 7). Results. In Study 1, the effects of cyanocobalamin on hemodynamic parameters were indistinguishable from those of saline. In Study 2, hydroxocobalamin infusion was associated with moderate hemodynamic effects, including an increase in systemic vascular resistance, an increase in blood pressure, and a decrease in cardiac output. Administration of L-NAME abolished the effects of hydroxocobalamin on all hemodynamic parameters. ANGII at a dose producing a pressor response comparable to that of L-NAME did not influence the hydroxocobalamin-associated hemodynamic changes. Conclusion. These studies in anesthetized rabbits demonstrate that the moderate pressor effect of hydroxocobalamin is not related to the formation of cyanocobalamin but is very likely related to the scavenging of nitric oxide by hydroxocobalamin.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,501.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.