904
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen Production from Biomass via Supercritical Water Gasification

Pages 1342-1354 | Received 19 Oct 2008, Accepted 29 Nov 2008, Published online: 17 May 2010
 

Abstract

Comparison with other biomass thermochemical gasification, such as air gasification or steam gasification, the supercritical water gasification can directly deal with the wet biomass without drying, and has high gasification efficiency in lower temperatures. The cost of hydrogen production from supercritical water gasification of wet biomass was several times higher than the current price of hydrogen from steam methane reforming. Biomass is gasified in supercritical water at a series of temperatures and pressure during different resident times, and the product gas is composed of H2, CO2, CO, CH4, and a small amount of C2H4 and C2H6. Supercritical water is a promising reforming media for the direct production of hydrogen at 875–1,075 K temperature with a short reaction time (2–6 s). As the temperature is increased from 875 to 1,075 K the H2 yield increases from 53 to 73% by volume, respectively. In addition to being a high mass transfer effect, supercritical water also participates in reforming reaction. Pressure has a negligible effect on hydrogen yield above the critical pressure of water.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.