77
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Natural Circulation Core Cooling Steady State Analysis in Advanced BWRs

, &
Pages 435-444 | Received 10 Oct 2010, Accepted 12 Nov 2010, Published online: 23 Dec 2013
 

Abstract

In this study, the steady-state characteristics of two-phase natural circulation core cooling in advanced boiling water reactors is investigated. The natural circulation is controlled by the mean density difference between the coolant inside and outside of the core. The Boussinesq approximation was applied in the momentum equations for two-phase flow analysis that considers the buoyancy force, which is related with thermal effects. The results obtained in steady state with the buoyancy force in the core were compared with the standard approximation. It was found that the buoyancy effects in two-phase flow can be important in the nuclear design of advanced boiling water reactors, due to the fact that nuclear parameters, such as thermal-hydraulics and neutronic, power, void fraction, fuel temperature, heat flux, mass flow rate in the core (superficial velocities), feedwater flow, and main steam flow, are appreciably influenced by this physical phenomena.

Notes

aUsing the Boussinesq approximation.

bRelative difference regarding of the value obtained without effects of the buoyancy force.

cDefined by Eq. (11).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.