112
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Predictive Tool for the Estimation of True Vapor Pressure of Volatile Petroleum Products

Pages 1346-1357 | Received 10 Dec 2010, Accepted 31 Dec 2010, Published online: 16 Apr 2014
 

Abstract

In this article, an Arrhenius-type asymptotic exponential function combined with Vandermonde matrix, which is easier than existing approaches, less complicated with fewer computations, and suitable for process engineers, is presented here for the estimation of liquefied petroleum gas and natural gasoline true vapor pressure as a function of Reid vapor pressure and temperature. This predictive tool is recommended as a quick reference to determine true vapor pressures of typical liquefied petroleum gases, natural gasoline, and motor fuel components at various temperatures. Additionally, the developed tool will enable estimation of operating pressure of a storage tank necessary to maintain the stored fluid in a liquid state at various temperatures as well as for simple evaluation of refrigerated storage versus ambient temperature storage for liquefied petroleum gases. The proposed predictive tool works for temperatures in the range of 253 to 373 K and Reid vapor pressure more than 35 kPa. The proposed method is superior owing to its accuracy and clear numerical background based on Vandermonde matrix, wherein the relevant coefficients can be retuned quickly if more data are available. Estimations are found to be in excellent agreement with the reliable data in the literature with average absolute deviations being around 2.4%. The tool developed in this study can be of immense practical value for the engineers and scientists to have a quick check on the true vapor pressure of typical liquefied petroleum gases, natural gasoline, and motor fuel components at various conditions without opting for any experimental measurements. In particular, chemical and process engineers would find the approach to be user-friendly with transparent calculations involving no complex expressions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.