184
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Modeling of Turbulent Flows of Newtonian Fluids in a Concentric Annulus with Pipe Rotation

, , &
Pages 540-548 | Received 23 Dec 2010, Accepted 01 Apr 2011, Published online: 31 Jan 2012
 

Abstract

In this study, a mathematical model is proposed to predict flow characteristics of Newtonian fluids inside a concentric horizontal annulus. A numerical solution, including pipe rotation, is developed for calculating frictional head losses in concentric annuli for turbulent flow. Navier-Stokes equations are numerically solved using the finite differences technique to obtain the velocity field. Experiments with water are performed in a concentric annulus with and without pipe rotation. Average fluid velocities are varied in the range of 1.1–3.3 m/s at various inner pipe rotations (0–120 rpm) in a horizontal concentric annulus. To verify the proposed model, estimated frictional pressure losses are compared with experimental data and the commercial software package ANSYS Workbench 10.0. The numerical model predicts frictional head losses with an error less than ±10% in most of the test cases.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.