152
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Optimization of Bio-diesel Production from Waste Frying Oil Using Response Surface Methodology and the Investigation of Correlations for Changes in Basic Properties of Bio-petro-diesel Blends

, &
Pages 457-470 | Received 19 Dec 2012, Accepted 04 Jan 2013, Published online: 06 Feb 2014
 

Abstract

Bio-diesel is derived from renewable sources and is steadily gaining attention and significance for use as an alternative or in blends with petro-diesel. In this study, bio-diesel was produced by alkaline-catalyzed transesterification process of waste frying oil at 60°C and 300 rpm. Response surface methodology, based on a central composite design, was employed to statistically evaluate and optimize the conditions for maximum conversion to bio-diesel and to study the significance and interaction of methanol to oil molar ratio, catalyst concentration, and reaction time on bio-diesel yield. A quadratic model equation was obtained for bio-diesel conversion by multiple regression analysis and the validity of the predicted model was confirmed. The optimum combinations for transesterification were determined to be methanol to oil, 9:1; catalyst amount, 0.6%; and reaction time, 1 h. The optimum and actual bio-diesel yields were 99.13 and 98.90%, respectively. The fuel properties of the produced bio-diesel and bio-petro-diesel blends were measured and compared with those of petro-diesel and the American Society for Testing and Materials standards for bio-diesel and bio-petro-diesel blends, and acceptable agreement was observed. Correlations were also established to describe the changes of basic properties of the produced fuel with the volumetric percentage of the bio-diesel for the bio-petro-diesel blends.

Notes

aSS: sum of squares; df: degree of freedom; MS: mean square.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.