121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models

ORCID Icon, , , &
Received 10 Jun 2020, Accepted 19 Aug 2020, Published online: 07 Sep 2020
 

ABSTRACT

Recent developments in internal combustion engines have heightened the need for alternative biofuel. In the last five years, acetone-butanol-ethanol (ABE) has been extensively studied as a promising biofuel. However, the detailed investigation of its fuel properties has not been performed. One of the vital fuel properties is the cetane index. It is used to define the ignition quality of fuel, but its determination is painstaking and expensive. No previous study has utilized both empirical mathematical and ANN models to predict the cetane index of ABE-diesel blends. This study aims to predict ABE’s cetane index by comparing five empirical mathematical models with seven artificial neural networks (ANN) training algorithms. To the best of our knowledge, this is the first study to examine the cetane index of ABE-diesel blends using both empirical and ANN models. Results revealed that the feed-forward backpropagation network with 4 input, 10 hidden, and 1 output neurons that was trained with Levenberg-Marquardt algorithm (ANN-LM) showed the best performance with the highest values of R (0.9992) and R2 (0.9984). It also has the lowest values of MAD, MSE, RMSE and MAPE at 0.2572, 0.4456, 0.6675, and 0.5304, respectively. As compared to the best empirical mathematical model (the 3rd order polynomial), the ANN-LM had slightly better performance accuracy. Therefore, the 4–10-1 ANN structure trained with Levenberg-Marquardt was found to be the best predictor for cetane index of ABE-diesel blends at various blending ratios.

Nomenclature

Acknowledgments

Provision of funds by the Universiti Teknologi Malaysia (UTM) under the research university grant Q.J130000.3509.06G97 to support this work is gratefully acknowledged.

Additional information

Funding

This work was supported by the Universiti Teknologi Malaysia [Q.J130000.3509.06G97].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.