196
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A manhattan metric based perturb and observe maximum power point tracking algorithm for photovoltaic systems

Pages 469-492 | Received 02 Jul 2021, Accepted 18 Feb 2022, Published online: 09 Mar 2022
 

ABSTRACT

Maximum power point tracking (MPPT) requires the use of fast and efficient algorithms that can efficiently discover maximum power point (MPP) even under rapidly changing atmospheric conditions. The conventional perturb and observe (P&O) is a commonly utilized MPPT algorithm due to its parameter-independent and straightforward nature. Despite these merits, P&O suffers from low tracking efficiency, power fluctuations around the MPP, and drift. Various adaptive P&O algorithms have been proposed to reduce these drawbacks. In this paper, a novel Manhattan distance-metric-based adaptive P&O (MPO) algorithm is proposed to deal with problems of the P&O algorithm. The MPO algorithm excels with increasing the MPP convergence rate, reducing the convergence time, and decreasing the power fluctuations. The proposed method has been validated using PSIM simulations and experimental studies under constant and rapidly changing irradiance conditions. Experimental verifications were carried out using the experimental setup containing a step-down converter and ATmega328p microcontroller. In these experiments, the success of the MPO algorithm is compared with P&O and adaptive P&O algorithms. The results show that the MPO algorithm successfully tracks the MPP in steady and rapidly changing irradiance conditions when others fail occasionally. On top of that, over 99% MPPT efficiency is achieved, and the convergence time is also improved.

Nomenclature

Acknowledgments

The author owes thanks to his family members for constant support and sacrifice.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Research Fund of the Adana Alparslan Turkes Science and Technology University [21103001].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.