399
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The synthesis of novel porous graphene anodes for fast charging and improved electrochemical performance for lithium-ion batteries

, , , , , & show all
Pages 4349-4363 | Received 16 Dec 2021, Accepted 29 Apr 2022, Published online: 17 May 2022
 

ABSTRACT

As part of sustainable development goals seven and thirteen, electric vehicles (EV) are taking over internal combustion engine vehicles by using battery packs as their power source. One major concern for the EV sector is the charging time of lithium-ion (Li-ion) batteries. Advancing the battery pack industry and the EV sector will benefit economically and environmentally by creating pores on the graphene anode using the NaCl activation method, eventually leading to high performance and efficiency in Li-ion batteries. Accordingly, the present study focused on fabricating novel macroporous graphene (MPG) anodes for fast-charging Li-ion batteries. Macropores increase the anode surface area, thereby enhancing lithiation. The performance of the novel MPG anode is compared with that of the commercial mesocarbon microbead (MCMB) anode. As a result, the MPG anode exhibits a 15% faster charge than the MCMB at a 0.1 C rate. Moreover, the specific capacity of the MPG anode retains 16.3% higher than the MCMB anode after the completion of the 100th cycle.

Acknowledgments

The authors are thankful to the Centre of Excellence in Advanced Manufacturing Technology and STEP, IIT Kharagpur, for providing electrochemical analysis equipment and Raman spectroscopy, respectively, for the successful completion of the study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.