208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and performance characterization of steel slag-based thermal storage composites for waste recycling and thermal energy storage

, , , , , , & show all
Pages 8221-8234 | Received 10 Jun 2022, Accepted 29 Aug 2022, Published online: 05 Sep 2022
 

ABSTRACT

At present, the steel industry produces a large amount of steel slag during the smelting process, which causes serious pollution to the environment and land. Therefore, new technologies must be used to deal with steel slag. In this study, the steel slag powder refined by the wet grinding technology is used as the matrix material, MgO as material additive, and the clay is used as the binder to prepare a new type of composite heat storage material. The results indicate that the mass ratio of wet grinding steel slag powder, MgO powder and clay is 6:3:1, the composite heat storage material can have a strong compressive strength of 70.9 MPa. The thermal conductivity of the heat storage material is 0.98 W/m⋅K and can reach 1.27 J/g⋅K at 720 ℃, which has good thermal conductivity and long service life. When the heat storage material rises to 900 ℃, the heat storage density can reach 905 J/g, with good heat storage performance and thermal cycle stability. The objective is to develop sustainable and low-cost thermal energy storage material for industry waste heat recovery and in renewable energy applications. At the same time, this valuable market for slag in the energy field provide a new way to directly utilize steel slag with extraordinary economic and environmental benefits.

GRAPHICAL ABSTRACT

Acknowledgement

This work was supported by the project of Xinjiang Huli Jiayuan Environmental Protection Technology Co., Ltd. (Preparation of steel slag heat storage material suitable for Xinjiang region and research on its heat storage system).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.