932
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics

, &
Pages 37-49 | Received 06 Nov 2010, Accepted 27 Nov 2011, Published online: 24 Feb 2012
 

Abstract

A simultaneous temperature measurement and flow visualization experiment was performed to investigate the thermal and flow behaviors of a silicon-based micro-pulsating heat pipe (micro-PHP) with trapezoidal microchannels with a hydraulic diameter of 352 μm. FC-72 and R113 were used as working fluids. Variations in temperature versus time at different locations of the micro-PHP under different power inputs and typical flow patterns in microchannels were recorded. The evaporator wall temperature, or the maximum localized temperature, of the micro-PHP at moderate filling ratios was measured and compared to those derived from the empty microdevice (0% filling ratio). Experimental results showed that a micro-PHP embedded in a semiconductor chip could significantly decrease the maximum localized temperature. At a power input of 6.3 W, reductions in the evaporator wall temperature of about 42.1°C (or 34.1%) and 41.9°C (or 33.9%) were obtained for the micro-PHP charged with R113 at filling ratios of 41 and 58%, respectively. When the micro-PHP charged with FC-72, a maximum power input of about 9.5 W associated with a heat flux up to 10.7 W/cm2 was reached at a moderate rise in wall temperature of the evaporator. The visualization study demonstrated that the evaporation, adiabatic, and condensation sections of the micro-PHP were largely occupied by annular, slug, and slug–bubbly flows, respectively, at a steady state characterized by sustained self-exciting oscillations of working fluid. However, no local nucleate boiling was detected in the micro-PHP at the power input range, which was different from the results reported for traditional PHPs.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 50925624 and 51076060), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Startup Foundation of Jiangsu University for Advanced Scholars (No. 11JDG080).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.