386
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Nanostructure Distribution on Subcooled Boiling Heat Transfer Enhancement over Nanostructured Plates Integrated Into a Rectangular Channel

, , , , &
Pages 313-328 | Received 20 Dec 2013, Accepted 01 May 2014, Published online: 02 Oct 2014
 

Abstract

In this study, subcooled flow boiling is investigated over nanostructured plates at flow rates ranging from 69 mL/min to 145 mL/min. The first configuration of the nanostructured plate includes ˜600-nm-long, closely packed copper nanorod arrays distributed randomly upon the surface with an average nanorod diameter of ˜150 nm, and the second configuration consists of a periodic structure having ˜600-nm-long copper (Cu) nanorods with an average nanorod diameter of ˜550 nm and a center-to-center nanorod separation of ˜1 μm. The nanorod arrays are deposited utilizing glancing angle deposition (GLAD) technique on the copper thin film (˜50 nm thick) coated on silicon wafer substrates. Dimensions of the test section, heat flux values, and flow rates are chosen to ensure that nanostructured plates remain intact along with their nanorods in their original shape and position, so that the nanostructured plates could be used for many experiments. A consistent increase (up to 30%) in heat transfer coefficients is observed on nanostructured plates compared to the Cu thin film, which is used as the control sample. However, no significant difference in the boiling heat transfer performance between the random and periodic nanorods was observed, which indicates that the distribution of nanostructures may not be very critical in achieving enhanced heat transfer. In light of the obtained promising results, channels with nanostructured surfaces are proven to be useful, particularly in applications such as cooling of small electronic devices, where conventional surface modification techniques are not applicable.

ACKNOWLEDGMENTS

The authors thank the UALR Nanotechnology Center, Sabanci University Nanotechnology Research and Application Center (SUNUM), and Dr. Fumiya Watanabe for the continued support in performing SEM measurements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.