522
Views
7
CrossRef citations to date
0
Altmetric
Articles

Reconsidering Uncertainty from Frequency Domain Thermoreflectance Measurement and Novel Data Analysis by Deep Learning

ORCID Icon, &
Pages 138-149 | Received 11 Mar 2020, Accepted 03 Aug 2020, Published online: 19 Aug 2020
 

ABSTRACT

Frequency-domain thermoreflectance (FDTR) is a popular technique to investigate thermal properties of bulk and thin film materials. The FDTR data analysis involves fitting experimental data to a theoretical model whose accuracy may be affected by improper fitting approach and by convergence to local minima. This work proposes a novel data analysis approach using deep learning techniques. The developed deep learning model for FDTR (DL-FDTR) can accurately predict thermal conductivity, volumetric heat capacity and thermal boundary conductance with mean error below 5% for bulk samples coated with Au. DL-FDTR predictions can serve as an initial guess to the traditional fitting algorithms and can efficiently avoid local minima with regular fitting options, therefore improving the accuracy of data fitting and uncertainty evaluation.

Supplementary material

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.