124
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Dermatotoxicity of Cutting Fluid Mixtures:In Vitro and In Vivo Studies

, , &
Pages 235-247 | Published online: 10 Oct 2008
 

Abstract

Cutting fluids are widely used in the metal-machining industry to lubricate and reduce heat generation when metals are cut by a metal-cutting tool. These cutting fluids have caused occupational irritant contact dermatitis (OICD), and many of the additives used in these cutting fluid mixtures are thought to be responsible for OICD in workers. The purpose of this study was to assess single or various combinations of these additives in initiating the OICD response following an acute 8-hour exposure in porcine skin in vivo and in vitro using the isolated perfused porcine skin flap (IPPSF) and human epidermal keratinocytes (HEK). Pigs (n = 4) were exposed to 5% mineral oil (MO) or 5% polyethylene glycol (PEG) aqueous mixtures containing various combinations of 2% triazine (TRI), 5% triethanolamine (TEA), 5% linear alkylbenzene sulfonate (LAS), or 5% sulfurized ricinoleic acid (SRA). Erythema and edema were evaluated and skin biopsies for histopathology were obtained at 4 and 8 hours. IPPSFs (n = 4) were exposed to control MO or PEG mixtures and complete MO or PEG mixtures, and perfusate samples were collected hourly to determine interleukin- (IL-) 8 release. The only significant (p < 0.05) mixture effects observed in IPPSFs were with SRA + MO that caused an increase in IL-8 release after 1 or 2 hours' exposure. In vivo exposure to TRI alone appeared to increase erythema, edema, and dermal inflammation compared to the other additives, while SRA alone was least likely to initiate a dermal inflammatory response. In 2-component mixture exposures, the presence of TRI appeared to increase the dermal inflammatory response at 4 and 8 hours especially with the PEG mixtures. In the 3- and 4-component mixtures, MO mixtures are more likely to incite an inflammatory response than PEG mixtures. TRI exhibited the highest toxicity toward HEK, which correlates well to the in vivo irritation and morphology results. In summary, these preliminary studies suggest that the biocide, TRI, is the more potent of the 4 performance additives in causing dermal irritation, and this may vary depending on whether the worker is exposed to a synthetic (PEG)- or MO-based fluid. These findings will however require further clinical studies to validate these acute dermal effects as well as human cumulative irritation following exposure to similar cutting fluid formulations in the workplace.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,568.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.